Download Juniper.JN0-664.VCEplus.2023-06-19.65q.tqb

Download Exam

File Info

Exam Service Provider Professional (JNCIP-SP)
Number JN0-664
File Name Juniper.JN0-664.VCEplus.2023-06-19.65q.tqb
Size 16 MB
Posted Jun 19, 2023
Download Juniper.JN0-664.VCEplus.2023-06-19.65q.tqb

How to open VCEX & EXAM Files?

Files with VCEX & EXAM extensions can be opened by ProfExam Simulator.

Purchase

Coupon: MASTEREXAM
With discount: 20%






Demo Questions

Question 1

Exhibit.
Referring to the exhibit; the 10.0.0.0/24 EBGP route is received on R5; however, the route is being hidden.
What are two solutions that will solve this problem? (Choose two.)


  1. On R4, create a policy to change the BGP next hop to itself and apply it to IBGP as an export policy
  2. Add the external interface prefix to the IGP routing tables
  3. Add the internal interface prefix to the BGP routing tables.
  4. On R4, create a policy to change the BGP next hop to 172.16.1.1 and apply it to IBGP as an export policy
Correct answer: AB
Explanation:
the default behavior for iBGP is to propagate EBGP-learned prefixes without changing the next-hop.This can cause issues if the next-hop is not reachable via the IGP. One solution is to use the next-hop self command on R4, which will change the next-hop attribute to its own loopback address. This way, R5 can reach the next-hop via the IGP and install the route in its routing table.Another solution is to add the external interface prefix (120.0.4.16/30) to the IGP routing tables of R4 and R5. This will also make the next-hop reachable via the IGP and allow R5 to use the route. According to 2, this is a possible workaround for a pure IP network, but it may not work well for an MPLS network.
the default behavior for iBGP is to propagate EBGP-learned prefixes without changing the next-hop.
This can cause issues if the next-hop is not reachable via the IGP. One solution is to use the next-hop self command on R4, which will change the next-hop attribute to its own loopback address. This way, R5 can reach the next-hop via the IGP and install the route in its routing table.
Another solution is to add the external interface prefix (120.0.4.16/30) to the IGP routing tables of R4 and R5. This will also make the next-hop reachable via the IGP and allow R5 to use the route. According to 2, this is a possible workaround for a pure IP network, but it may not work well for an MPLS network.



Question 2

You are responding to an RFP for a new MPLS VPN implementation. The solution must use LDP for signaling and support Layer 2 connectivity without using BGP The solution must be scalable and support multiple VPN connections over a single MPLS LSP The customer wants to maintain all routing for their Private network In this scenario, which solution do you propose?


  1. circuit cross-connect
  2. BGP Layer 2 VPN
  3. LDP Layer 2 circuit
  4. translational cross-connect
Correct answer: C
Explanation:
AToM (Any Transport over MPLS) is a framework that supports various Layer 2 transport types over an MPLS network core. One of the transport types supported by AToM is LDP Layer 2 circuit, which is a point-to-point Layer 2 connection that uses LDP for signaling and MPLS for forwarding. LDP Layer 2 circuit can support Layer 2 connectivity without using BGP and can be scalable and efficient by using a single MPLS LSP for multiple VPN connections. The customer can maintain all routing for their private network by using their own CE switches.
AToM (Any Transport over MPLS) is a framework that supports various Layer 2 transport types over an MPLS network core. One of the transport types supported by AToM is LDP Layer 2 circuit, which is a point-to-point Layer 2 connection that uses LDP for signaling and MPLS for forwarding. LDP Layer 2 circuit can support Layer 2 connectivity without using BGP and can be scalable and efficient by using a single MPLS LSP for multiple VPN connections. The customer can maintain all routing for their private network by using their own CE switches.



Question 3

Exhibit.
Referring to the exhib.t, what must be changed to establish a Level 1 adjacency between routers R1 and R2?


  1. Change the level l disable parameter under the R1 protocols isis interface lo0.0 hierarchy to the level 2 disable parameter.
  2. Remove the level i disable parameter under the R2 protocols isis interface loo . 0 configuration hierarchy.
  3. Change the level 1 disable parameter under the R2 protocols isis interface ge-1/2/3 .0 hierarchy to the level 2 disable parameter
  4. Add IP addresses to the interface ge-l/2/3 unit 0 family iso hierarchy on both R1 and R2.
Correct answer: B
Explanation:
IS-IS routers can form Level 1 or Level 2 adjacencies depending on their configuration and network topology. Level 1 routers are intra-area routers that share the same area address with their neighbors. Level 2 routers are inter-area routers that can connect different areas. Level 1-2 routers are both intra-area and inter-area routers that can form adjacencies with any other router.In the exhibit, R1 and R2 are in different areas (49.0001 and 49.0002), so they cannot form a Level 1 adjacency. However, they can form a Level 2 adjacency if they are both configured as Level 1-2 routers. R1 is already configured as a Level 1-2 router, but R2 is configured as a Level 1 router only, because of the level 1 disable command under the lo0.0 interface. This command disables Level 2 routing on the loopback interface, which is used as the router ID for IS-IS. Therefore, to establish a Level 1 adjacency between R1 and R2, the level 1 disable command under the R2 protocols isis interface lo0.0 hierarchy must be removed. This will enable Level 2 routing on R2 and allow it to form a Level 2 adjacency with R1.
IS-IS routers can form Level 1 or Level 2 adjacencies depending on their configuration and network topology. Level 1 routers are intra-area routers that share the same area address with their neighbors. Level 2 routers are inter-area routers that can connect different areas. Level 1-2 routers are both intra-area and inter-area routers that can form adjacencies with any other router.
In the exhibit, R1 and R2 are in different areas (49.0001 and 49.0002), so they cannot form a Level 1 adjacency. However, they can form a Level 2 adjacency if they are both configured as Level 1-2 routers. R1 is already configured as a Level 1-2 router, but R2 is configured as a Level 1 router only, because of the level 1 disable command under the lo0.0 interface. This command disables Level 2 routing on the loopback interface, which is used as the router ID for IS-IS. 
Therefore, to establish a Level 1 adjacency between R1 and R2, the level 1 disable command under the R2 protocols isis interface lo0.0 hierarchy must be removed. This will enable Level 2 routing on R2 and allow it to form a Level 2 adjacency with R1.









CONNECT US

Facebook

Twitter

PROFEXAM WITH A 20% DISCOUNT

You can buy ProfExam with a 20% discount!



HOW TO OPEN VCEX FILES

Use ProfExam Simulator to open VCEX files